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1. An asymmetric distribution of lavas and heat producing elements 2. Thermo-chemical convection model

a. Main features (program name: GAIA, [3])

o2 2D cylindrical and 3D spherical thermo-chemical convection
@ 10-20 km radial resolution, 20-60 km lateral resolution

= solves equations of conservation of mass, energy and
momentum under the Boussinesg approximation

= inertial forces are neglected (viscosity >> thermal diffusivity)
= newtonian rheology (stress and strain are proportional)

b. Important parameters i
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= initial temperature profile

Fig. 1: Lunar nearside and farside as seen by the LROCWAC. Fig. 2: Global thorium map of the Moon from Lunar Prospector.

Two temperature profiles are investi- I5OO;— =< ]

~17% of the surface is covered by lavas, ~95% of which are The highest concentrations on the nearside correspond to high gated as pictured on the right : « cold *; 1 __
on the nearside in the Procellarum KREEP Terrane (PKT). standing crust that was not flooded by mare basalts. » corresponds to an adiabatic profile § | !
while « hot » follows the solidusupto 2 soop — - ot
High concentrations of heat sources within the crust in the PKT region a given depth and then the adiabat. b 3

= heat sources distribution i e ey

(1) Mare basalts at the lunar surface are concentrated in the Procellarum KREEP Terrane (see Fig. 1).

. o , , o , . The Moon bulk uranium content has
(2) There is a similar asymmetry in heat producing elements distribution (see Fig. 2).

been estimated to lie between Earth’s

(1)+(2) suggest that the higher heat production in this province is responsible for melting the underlying mantle. value (20ppb) and nearly twice that
amount (35ppb) [4]. We define the KREEP PKT size | bulk U | concentrations
This indicates the presence of a layer enriched in heat sources (KREEP) below the PKT which would have a tremendous layer to be 20 km thick and to 'a}’ casel | 4| azepb | EeRLeO0PR:
impact on thermal evolution [1,2]. In this project, we study the effect of this layer on the lunar history and its possible below a 50 km crust. We use [5s [moonm T DU vaussordeom
values for heat sources concentrations '

resent day measurable consequences.
P Y X and study two end-member cases.

3. Heat sources are localized in one region: what are the consequences? 4. Conclusions

The consequences of localizing heat sources in the

1) Predicted present day temperature anomaly PKT are numerous and long lasting.

= meltis produced mainly on the nearside hemisphere
consistent with the distribution of mare basalts.

= a temperature anomaly beneath the PKT is still
present today.

These results in turn have interesting implications
on direct observables.

. The temperature anomaly could influence seismic

| ) wave velocities and electrical conductivity
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Radial Gravity Anomaly [mGal] The temperature anomaly also induces a density
Case 1: Present day temperature anomaly Case 2: Present day temperature anomaly Flg 3: Bad'(il, g;a;nty anortnaly) (Ijoule to :‘L_Ee IISI?I/' de.;; - fndomaly Vl\r/rhlr:r’ :Vhfr: :EI'(eknnmtO aii‘:\u?tr could
below the PKT when its angular size is 40°. below the PKT when its angular size is 80°, >'™Y '=919N thigh teMpEratire) below the Fi 1, Wi educe current crustal thickness estimates.

an initial anomaly size of 40°. The opposing effect of

dense lavas at the surface is not taken into account
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2) CMB heat flow & magnetic history and would cancel most of this negative anomaly. za\e/;:tae: il:ﬁ‘/]fjelricoevsa teha:rr;%;gg?;enlgl could

The white region is the current meltzone.  The white region is the current meltzone. The heat flow pattern at the CMB is deeply
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