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» The Piton de La Fournaise is a very active volcano with an eruption around every 8 months [1].

» Interferometric synthetic aperture radar (InSAR) is a powerful tool to monitor deformation in active volcanoes.

» INSAR lacks accuracy over vegetated and pyroclastic surfaces that induce radar phase decorrelation and then errors of pre-eruptive surface displacements [2].

» Light detection and ranging (LIDAR) technology provides more accurate information about topography and vegetation height and allows to generate a high-resolution
digital terrain model (DTM) of the volcanic edifice. The information derived from intensity values was recently used to identify and map lava flows [3,4].

» To enhance the calculation of INSAR coherence, we combine normalized airborne LIDAR intensity data with spaceborne INSAR coherence images from ALOS PALSAR
L-band acquired over the Piton de la Fournaise in 2008 and 2009.

» This study is focused on different lava flows, vegetated and pyroclastic surfaces.

LIDAR data processing

Datasets (IGN) Acquisition system Generation of a DTM

» Two high-resolution airborne campaigns + Filtering of the point cloud to classify the different types of points (low or high
performed over the volcano in 2008 and vegetation and ground)

2009 Vert|cal accuracy =0.1om » Triangulation of the ground points to generate a DTM with a 1 m resolution by
» Two low-resolution airborne campaigns Horizontal accuracy using the Terrascan software (TIN model)
performed along the island shore in 2008 Density 1-5 pt/m?
and over the whole island in 2009 _ S
Filtering Ground point R e T
25 R Measurement rate 50 kHz interpolation =« . |
- P s _ . R e w
v DMICEERl Cr§ Flight height ~1400 m (AGL) Raw LiDAR data Ground points »G‘“N}‘m
» Validation of the DTM by comparing the GPS (vertical accuracy = 0,05-0,1 m)

and the LIDAR data acquired over several regions
- mean of the differences |z par - Zgps|: HAZ = 0,03 m

Generation of normalized intensity images
» Spatial resampling of the intensity values
» Assessment of the main factors influencing the laser intensity [5,6]
a) the distance between the sensor and the target
b) the topographic and local scan angle effects
c) the atmospheric attenuation (considered as constant)
» Validation of the radiometric correction described in [6] to check the first
two factors influencing the intensity
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Radar-LiDAR coupling
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Preliminary conclusions

+» SAR coherence variations are caused by the dielectric property modifications of pyroclastics and vegetation growth.

» L-band polarimetric data allow to minimize temporal decorrelation effects caused by vegetation covers but the signal penetration into pyroclasts is more important.

» The correlation between INSAR coherence and LIDAR intensity should enhance the analysis of the coherence over vegetated and pyroclastic active terrains: LIDAR
data are expected to help overcome phase decorrelation due to vegetation and soil penetration in order to enhance the accuracy of early phase displacement maps.
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