InSight: Using Earth data to demonstrate inversion
techniques for Mars’ interior
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1. Introduction 4. Herglotz-Weichert inversion |
InSight is a proposed Discovery mission which will deliver a lander containing geophysical | | Many early 1D models of Earth structure based on travel times | "
instrumentation, including a heat flow probe and a seismometer package, to Mars to utilized Herglotz-Weichert analytic inversion techniques [5], ? :

perform, for the first time, an in-situ investigation of the interior of a truly Earth-like planet |which basically determine velocity structure from the slopes E :

other than our own. However, since the mission will have a single lander and no seismic of the best-fit lines through the travel time picks (fig. 7). " -

network, we will need to take advantage of single station approaches, and these However, the large errors (fig. 5), including systematically early |

approaches should be tested with Earth data. times between 30 and 60, do not allow for stable results,
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producing a very high velocity model (the thin red line starting Figure 7: Constrained monotonic,

2 . DEte Cta bi I ity model in figure 8 below). concave down fits to travel time picks.

Using estimates of Martian seismicity based on
thermal calculations [1] or visible faulting [2,3], we
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expect to record body waves for many events s T e T | 1 . 0-
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Figures 1 and 3 show some example Earth T T T tracing using the TauP Toolkit [6]. The models are < 1500
seismograms in this range. ngher orbit surface S B i il e ::2:15'0191 i parameterized with a Simp|e 1 |ayer 40 km thick crust s .
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The detectability effects discussed above mean we Figure 4: Example higher orbit surface wave
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