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Abstraci—A summary of formulas with which the tidal sccelerations due to the moon and
the sun can be computed a$ any given time for any point on the earth's sarface, without
reference to tables, is presented in this paper. These formulas are convenient for computer use.

5 Introduction—The basic formulas for the
gmputation of the vertical and horizontal
omponents of tidal acceleration, go and A, on
yrigid earth have been given by a number of
‘uthors. The amalysis is given, for example, by
‘Mpodson [1921], Schureman [1924], Peitit {1954],
ad Bartels [1957]. A good account is also given
ty Doodson and Warburg [1941]. Schureman’s
‘panual was reissued as a revised edition in
‘941, but in this paper references are given
w the older edition in ecases where a particular
prmula no longer appears in the new edition,
o & result is less accurately given there. The
seantial first step in all these formulations is
‘he expression of the effective tidal acceleration
terms of the zenith angle and the distance of
¢ tide-producing hody. From this peint there
we two main lines of development. Doodson,
Yhureman, and Bartels proceeded to develop
the lunar and solar tides into their harmonic
wostituents, whereas Pettit gave formulas
sith which the tidal forces can be computed
with the aid of tables from the American Nautical
Almanae.

The author was recently engaged in program-
ing g for an electronic computer. The computer
was to display ge as a funetion of time for any
given place on the earth’s surface, starting at
wmy given epoch. For this purpose it seemed
teirable to use a elosed form for the expressien
for gy, rather than its harmonic development,
ind to obviate the use of tables in the computa-
fion, The formulas of Schureman were cast into
t form convenient for the purpose, and the

1_Insti§zute of Geophysics Publication No. 147.
his research was supported by the Office of
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resulting expressions were used in a g program
for ap IBM 709 computer. In view of the useful-
ness of this program it appears to the suthor
that a summary of the formulas used is of
interest.

Theory—The symbaols used in this discussion
are

¢ earth’s
108 em)

@' defined in equation (31}

a;’ defined in equation {32}

A ascending intersection of moon’s orbit
with the equator

¢ mean distance between centers of the
earth and the moon

¢ mean distance between centers of the
earth and the sun {1.495000 X 10'* cm)
[Pettit, 1954]

' defined in equation (34)

d distance between centers of the earth
and the moon

D distance between centers of the earth
and the sun

¢ eceentricity of the moon’s orbit (0.054899720
IShuremon, 1924, p. 172]; 0.05490 {Shure-
man, 1941, p. 162]}

€ eccentricity of the earth’s orbit

go vertical component of tidal acceleration
due to the sun and the moon

gm vertical component of tidal acceleration
due to the moon

g. vertical component of tidal acceleration
due to the sun

A mean longitude of the sun

he horizontal component of tidal acceleration
due to the sun and the moon

equatorial radius (6378270 X
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horizontal component of dal aveeleration
due to the moon

horizontal compenent of tidal aceeleration
due to the sun

height of point of observation above sea
fevel

inclination of the moon’s orbit to the
ecliptie

inclination of the moon's orbit fo the
equator

Iongitude of moon in its orbit reckoned
from its ascending intersection with the
equator

Iongitude of sun in the ecliptic reckoned
from the vernal equinox

terrestrial longitude of genersl point P on
earth’s surface

ratio of mean motion of the sun to that
of the moon (0.074804 [Schureman, 1941,
p. 1623

mass of moon

longitude of the moon’s ascending node
in its orbit reckoned from the referred
equinox (N = 0T in Fig. 1)

mean longitude of lunar perigee

mean longitude of solar perigee

general point on the earth’s surface
distance from P to the center of the earth
mean longitude of moon in its orhit reckoned
from the referred equinox

mass of sun

hour angle of mean sun measured west~
ward from the place of observations
Greenwich civil time measured in hours
number of Julian centuries (36,525 days)
from Greenwich mean noon on December
31, 1899

defined in equations {15) and {16}

zenith angle of moon
terrestrial latitude of
earth’s surface
Newton’s gravitational constant

longitude in the eelestial equator of its
intersection 4 with the moon’s orbit
{side AT in Fig. 1)

longitude in the moon's orbit of jts ag-
cending infersection with the celestial
equator

mean Jongitude of moon in radians in its
orbit reckoned from A

vernal equinox

general point on

referred equinox

¥ zenith angle of sun

X right ascemsion of meridian of place g

observations reckoned from 4

right aseension of meridian of place o

observations reckoned from the verns)

equinex ;

w inelimtion of the earth’s equator o the-
ecliptio == 23.452° [Sehureman 1941, p. 169

2 moaon’s ascending node :

Referring to Schureman [1941, p. 13)], we se¢ |
that, if the fifth power of the moon’s parally |
{which could only contribute less than 005
per cent of the total tide-producing foree) i
ignored, the vertical component (upwards) of ;
the Junar tidal foree per unit mass at a point P/
on the earth’s surface iy

W T Loy

M;M 2
G = E(‘;j‘z (3 cos’ 8~ 1)

3 udMr*

;ég—d—_;; (5eos’ @ — 3 cos &)
To the same order of accuracy the horizentsl ;
component is

+ (1

3 uMr .
he = P sin :
My
—g%(s cos’ § — 1) sin 8 (2 2

The expressions for the components of tidal &
acceleration due to the sun are similar, the
terms depending on the fourth power of the
sun’s parallax being negligible. Thus

. M7 ? o 3
g: = 43 {(Beos' g — 1) (3
3 ulSr
by = > %}“ 8in 20 ¢ (4)
g0 = g + g, (8) :
and
ho = h,, + h, (67

In order to express g, h, as functions of the
time for any given point P (given lstitude A
and longitude L), it is neeessary to obtein
b, ¢, d, and D as functions of time, and 7 as & -
function of Iatitude (and altitude). Schureman
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f1924, p. 30, equation §1] derives the relation®
“e0s 6 = sin A sin I'sin i
V 4+ cos A [eos® 37 cos (I — x)

4 sin® 31 cos (I + x)] "N
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Fic. 1—-Orbital parameters.
p = 334° 19’ 40.87"
+ (11 rev. + 392,515.9¢")T
— 87.247'T% — 0.045"'T° (11)
B o= 270° 417 48,0477
+ 129,602,768.13""T + 1.089"'T* {12)

:A gimilar relation holds for the sun’s zenith
angle ¢

“eos ¢ = sin Asinwsin §
+ cos A [eos® 3w cos (I = xu)
+ sin® 3w cos (b + x2)] {8

- Schureman [1941, p. 19] gave for the longitude
of the moon in its orbit

=g 4 Zesin (s — B +i—e’sin2(s — )

+-lfmsin(s-»2h+p)

+ % m® sin 2(s — k) (9)
. :Eéﬁd (p. 162) the following expressions for s, p, At
14 = 970° 26’ 14.72

+ (1336 rev. -+ 1,108,411.20')T

4 9.007T* + 0.0068"T° (10)

* *This relation is not given in Schureman {16411,
where the development of the tidal forces has
been rearranged.

These expressions may be compared with those
given by Bartels [1957, p. 747]. Bartels’ formulas
are equivalent to

¢ = 270° 26’ 11.72"
+ (1336 rev. + 1,108,406.05")T

4 7.1287'T* 4 0.0072"'T° (10"
p = 334° 19’ 46.42"
+ (11 rev. + 392,522.51")7T
— 37.15"T* — 0.036"'T° (119
h = 279° 41’ 48.05""
+ 129,602,768.117T + 1.080"T° (127
& is given by the relation
o =5 —f {13)

With reference to Figure 1, a little elementary
spherical trigonometry shows £ to be given by

£ = N — sin”’ (sin wsin N/sin I) (14)

In order to render the inverse sine in this formula
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unique, we also apply a cosine formula to the
spherieal triangle QAT. Denoting the side
24 by @, we then have

oS = cos N cogv -L sin ¥ siny cos w {15)

where » is the side AT (Fig. 1) and is the longitude
in the celestial equator of its intersection A
with the moon’s orbif; » is given-by equation
(21} below, while sin « is given, as above, Ly

(16)

From the values of sin o and cos @ we compute
tan {a/2) from the formula

sine = sinwsin N/sin J

tan (a/2) = sina/(1 + cos o) (17}

Now since « les in the interval {0, 2x), «/2 Les
in (0, v} and hence when a is computed as
« == 2tan”’ [sin /(1 + cos )] (18)

its value is uniquely determined.
The longitude N of the moon's node is given
by Schureman [1941, p. 162]

N = 259° 107 57.12"

— {Brev. 4 482,012,637

+ 78T - po0st T {19)
Bartels [1957, p. 747] gives a formula which is
equivalent {o
N = 259° 10 59.81""

— (5rev. + 482,911,297

+ TA48TT 4 0.0077 70 (197
The inclination I of the moon’s orbit to the
equator is given by

cos I = eos@ cos 4 — sinwsing cos \ (20}

I &5 always positive and varies between about
18% and 28°. Also » is given in terms of I, N by
the relation

v = sin™ {sin 1 sin N, sin /] {21)

and here the inverse sine is unique, since we
always have — 15° < » < 15°. Schureman [1041,
p. 162] gives

(22}

i= 5.145°
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The angle x in (7) is given by

(23)

For a point P on the earth’s surface with longi.
tude L, the value of £ is

X = 4+ ko

= 15(t, — 12} —~ L (24)

expressed in degrees,
FEquations (9) to {24) enable us to determine
the moon’s zenith angle from equation (7.
Turning now to eguation {8) for the sun's
zenith angle, we see that the sup's longitude
I, is given by
L = h + 2 sin (h — [N {25)

According to Schuwreman [1941, 1. 183 P s
given by
peo= 281° 137 15.077 - 6,185.0377

+ 163777 + 001277 {(26)
and e is given* by Schureman, [1924, p. 179] as
& = 0.01675104 — 0.000041807

= 0.0000001267° (27}

Bartels (1957, p. 747 gave an almost identical
expression for py:

o= 281718 14997 & 51884777

+L62TT 0011t (267
The quantity x, is given by
X1 = bk {28)

Equations (25) to (28} suffice to determine
the sun’s zenith angle from equation {8).

Referring to equations (1) to (4) we see that
i we use the known values of u, M, 8, that is
{Petit, 19534],

= 0670 5 1079 eps units
M o= 73887 100 grams
S o= 1,003 v 10w grams

the tidal forcos are determined if we know d,
the distance between the centers of the earth
and moon, and D, the distance between the
centers of the earth and sun. Both quantities

* Schureman [1041, p. 162) merely gives oo =
001675, epoeh Jon, I, 14800,




are variable, being given by the relations
Schureman, 1924, pp. 55 and 172)

Jd = 1/c 4+ a¢’e cos (s — p)

+ a'e’ cos 2(s — p)

=+ (16/8)a"me cos (s — 24 + p)
(20)
(30

+ a'm® cos 2s — A
VD= 1/e, -+ aey cos (b — p))

ere ¢ = mean distanee between the centers
f the earth and the moon = 3.84402 % 1010 1,
‘This figure is derived from Schureman’s 1941,
S p. 162] value ¢ = 238,357 miles. Also

(31}
@' is given by the formula analogous to {313

- Csi}};%

' = 1/l (32)

Eqguations (20} 6 132) now enable s to determine
the tidal foreos ut any given point at distence 7,
éay, from the center of the carth. For points on
“the earth’s surface it is convenient to make
‘use of the known shape of the earth and to
express r in terms of the height above sea lovel
and the latitude. Assuming the earth to be an
ellipsoid with purmetars as adopted by Lecar
' cand others [1859], we have

r= Ca-+ JJ {33
here £ s given by
CF w2 1/(1 A 0.006738 sin’ A) {31

- Bquations (1) to (34} determine the tidal
ceeleration at any point on the eartl’s surface.
he (unprimed) equations have been cheeked

* Equations (20) and (30 are aise given by
Schureman [1941, pp. 20 and 39] but with ¢’ =
A/, o' = 1/e,. Essensially, this means that e, e
dave been neglected in comparison with unity.
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by computing a number of cases (using an
IBM 709 computer) and comparing the results
with computations based on Peftit's [1954] paper,
and alse with computations (anpublished} by
Pettit on S.W.A.C. (an electronic computer
at the University of California). In every case
agreement to within a fraction of a microgal
was obtained. To this order of accuracy it is
immaterial whether equations (107), (117, (129,
(18, (26") or the unprimed equivalents are
used. Furthermore, in the actual program, values
of a and ¢ based on the Hayford spheroid

‘maodel of the earth [Hayford, 1910] were used,

and here again adoption of the later values
given in this paper has no effect on the order of
accuraey stated above.
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