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ABSTRACT
We develop a method of determining spectral estimates on a sphere localized to a spherical cap 
of angular radius θ0, from which admittance and coherence spectra can then be computed. By 
defining spatial and spectral concentration measures, and solving their associated eigenvalue 
problems, two classes of isotropic data tapers are constructed. The resulting concentration 
factors and data tapers are found to possess properties similar to those as derived by Slepian for 
the case of Cartesian geometry. In particular, we show that the eigenvalue problem leads to a 
class of mutually orthogonal data windows, and that the window properties are principally 
characterized by their space-bandwidth product, Lwindowθ0/π, analogous to that of the Cartesian 
Shannon number. In contrast to the single "spectrally-truncated spherical cap" taper used by 
Simons et al. (1997), our family of orthogonal tapers are found to possess higher concentration 
factors, and can be used in a manner analogous to traditional multitaper spectral analyes. In 
particular, coherences can be calculated for each spherical harmonic, and uncertainties can be 
obtained for the admittance and coherence estimates.

2.  LOCALIZED SPECTRAL ESTIMATION:
A NAIVE EXAMPLE

We would like to calculate spherical-harmonic admittance and coherence spectra localized to a 
"geologic province," here defined as a spherical cap of angular radius θ0. The gravity and 
topography are to be localized in the space domain by multiplying these datasets by a window. 
After expanding these localized fields in spherical harmonics, admittance and coherence spectra 
can be calculated in the standard manner. The question this study addresses is: 

What is the best form of this localizing window? 

To demonstrate that an inappropriate window design can give biased results, consider the 
following synthetic example. A planet with a topographic field corresponding to a pure spherical 
harmonic (here C40,0) is windowed by a box car (i.e., the field is set to zero outside of the 
spherical cap). Figure 1 shows that the power spectra of this window has an infinite bandwidth, 
and that the sidelobes only slowly decrease in ampltiude with increasing degree. Figure 2 shows 
the resulting power spectra of the windowed topography. Power from the input harmonic is seen 
to leak into all adjacent degrees.

Simons et al. (1997) have shown that power from an input 
harmonic l will "leak" into all degrees between l ± Lwindow.

Problems With a Box Car Window (red curve):

•   Power from the input spherical harmonic leaks into all adjacent degrees.

•   When the input field has a high dynamic range (which is typical of planetary topography and 
gravity power spectra), "spectral leakage" will bias the spectral estimates of those harmonics 
with the smallest amplitudes.

Desirable Window Features (blue curve):

•   The window should concentrate all of its energy within a spherical cap.

•   In order to minimize the effects of spectral leakage, the bandwidth of the window should be 
as small as possible. Spectral side lobes should either be absent or possess small amplitudes.
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Figure 1.  Power spectra of a box car window with an 
angular radius of 20º (red), and our first space-
concentrated taper (N=2, blue) as derived in Section 3.

Figure 2.  Power spectra of a pure harmonic windowed by 
a box car (red), and that from our first space-concentrated 
taper (blue).

3.  THE SPACE-CONCENTRATION PROBLEM
Consider an isotropic window centered at the north pole of a planet which can be expressed in 
spherical harmonics up to a maximum degree L

The fraction of the window's energy that is concentrated within a spherical cap of angular radius 
θ0 is given by

Inserting the first equation into the second yields, after some algebraic manipulations, the 
following eigenvalue problem 

where G is a vector of spherical harmonic coefficients, and the kernel, K, is given by

Solutions of the above eigenvalue equation will yield a set of orthogonal data tapers, with their 
level of spatial concentration being described by their associated eigenvalues. We note that 
analytical solutions exist for all elements of the above kernel, and we suspect that analytical 
solutions also exist for the eigenvalues and eigenfunctions. Such solutions, if found, would aid 
in studying the scaling and gain properties of these functions.

4.  THE SPECTRAL-CONCENTRATION PROBLEM
Consider an isotropic window that is defined to be zero exterior to θ0 and which hence 
possesses the following spherical harmonic expansion

The fraction of the window's spectral energy that is concentrated within a bandwidth L is given 
by

Inserting the first equation into the second and performing some algebraic manipulations yields 
the following Fredholm equation of the second kind

where the kernel, K, is given by

The above integral equation can be solved to arbitrary precision by utilizing Gauss-Legendre 
quadrature.

5.  KERNELS OF THE SPACE AND SPECTRAL 
OPTIMIZATION PROBLEMS

 

When the space-bandwidth product Lθ0/π is constant, 
the kernels are nearly identically scaled versions of each other.
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Figure 3.  Space-concentration kernels, scaled by (l+1), for 
four different values of θ0 and L. Each case has a space-
bandwidth product of 4.

Figure 4.  Spectral-concentration kernels, scaled by 
sin(θ0)/L, for four different values of θ0 and L. Each case has 
a space-bandwidth product of 4.

6.  EIGENVALUES OF THE 
SPACE-CONCENTRATION PROBLEM

 

•   For a given number of window coefficients, L, there are L+1 eigenvalues.

•   For a given space-bandwidth product, N=Lθ0/π, there are N-1 data windows with near- 
unity concentration factors.

•   The spectrally-truncated spherical cap taper used by Simons et al. (1997) corresponds to 
a space-bandwidth product of 1, and possesses a concentration factor of only ~92%.
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7.  EIGENFUNCTIONS OF THE SPACE AND 
SPECTRAL CONCENTRATION PROBLEMS

 

8.  SPECTRAL GAIN ASSOCIATED WITH THE 
WINDOWING PROCEEDURE
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9.  PRESCRIPTION FOR LOCALIZED (MULTI-TAPER) 
ADMITTANCE AND COHERENCE ESTIMATION

•   Choose a class of windows to work with.
1. Space-concentrated tapers possess a finite bandwidth L. When working with spectra that possess a 
high-dynamic range, the effects of spectral leakage will be minimized.
2. Spectral-concentrated tapers are perfectly concentrated in the space domain. The spectral side lobes, 
however, may be an issue when working with either red or high dynamic-range spectra.

•   For a given θ0, choose L such that the spatial or spectral concentration factors are all near
    unity. 
For a given space-bandwidth product, N=Lwindowθ0/π, only the first N-1 tapers are near perfectly 
concentrated in the space or spectral domains.
 
•   Localize the gravity and topography fields in the space domain by window multiplication,
    then average the admittance and coherence spectra of the N-1 tapers.
Since the admittance and coherence spectra involve ratios of spectral estimates, the differenct gain factors 
associated with each taper is removed.

Figure 5.  Plot showing the spatial concentration factor of 
the first four space-concentration tapers as a function of 
the window's spectral bandwidth (here for the case of θ0= 
20º). Each time the space-bandwidth product increases by 
one, another taper reaches a concentration factor of unity. 
For comparison, the concentration factor of a spectrally-
truncated spherical cap is also shown. The concentration 
factor of this window only slowly approaches unity, and 
possesses a concentration factor of ~92% when used with 
the number of coefficients as prescribed by Simons et al. 
(1997).

Figure 6.  Plot of the entire eigenvalue spectra (θ0= 30º) 
for several values of the space-bandwidth product, 
N=Lθ0/π. For each value of N, there are L=Nπ/θ0+1 
eigenvalues. However, only the first N-1 have values near 
unity. In analogy with the Cartesian concentration 
problem as originally posed by Slepian, we will refer to 
the spherical-harmonic space-bandwidth product as the 
Shannon number.

Figure 7.  Plots of the first four eigenfunctions (upper plot and 3D renditions) and their associated 
power spectra (lower plot) for the space- (blue) and spectral- (dashed) concentration problems. 
Here, N=4, θ0=40º, and L=18. Note that the two classess of eigenfunctions and eigenspectra are 
identical for θ<40º and L<18, respectively. In order to preserve orthogonality of the eigenfunctions, 
each successive function is seen to possess an aditional zero crossing within the cap.
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Figure 8.  We have empirically found that when one 
windows a data field, that the windowed power spectra 
differs from the input field by a constant gain (for 
L<l<Ldata-L). Displayed in this plot is this gain, scaled by 
θ0/π, as a function of the space-bandwidth product for the 
first four space-concentration tapers. The gain properties 
of each taper are seen to be distinct.

1.  MOTIVATION
Gravitational-topography admittance and coherence analyses can provide information on the 
structure and rheology of a planet's interior. While traditional Cartesian spectral analysis 
techniques are often appropriate for "large" planets such as the Earth, a spherical-harmonic 
approach is necessary for small planets such as the Moon, Mars and Mercury.

•   Since the gain properties of the data 
tapers are different, spectral estimates 
can not be obtained by averaging 
estimates from several tapers.

•   Admittance and coherence spectra 
involve ratios of spectral estimates, thus, 
these quantities can be averaged.


