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Part IT - Inside the methodology

1) What do we want? 3) Using neural networks as function approximators
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conductivity directly and only from well logs .
Uk v 4 Z ...and a neural network is a network of

interconnected neurons.

m) First task: find examples of thermal conductivity associated with well logs

...because MLP are universal approximators
(Cybenko, 1989).

2) Building a comprehensive data set
{thermal conductivity + well logs}
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Rumelhart et al. (1986) proposed an elegant and efficient optimization
algorithm ("backpropagation") to minimize the error of the MLP:

Ocean Drilling Program (ODP) provides a database of well logs and thermal o o
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. B, L b Al The predictions of the neural network are tested on an independant subset, not used during
g oo the optimization of the network's parameters.
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- We have been able to build up a comprehensive data set with more than 4000

L. 4 ; . We also test predictions along ODP site 1109D, after removing it during the optimization
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The distributions reflect ODP conditions (depth < 1200 mbsf): thermal conductivity, —

wave speed, density, resistivity are low; porosity neutron is medium to high

m) The trend is accurate!
mm) Deeper samples are needed to complete the data set!




