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1. Introduction

Study of marine magnetic measurements may
complement measurements of the remanent
magnetisation acquired on volcanic rocks or
sediments in order to recover the long term
evolution of the magnetic field intensity.
Indeed, the magmatic oceanic crust is a good
recorder of the magnetic reversals but also of
the variations of the magnetic field intensity.
The goal of this study is to use marine
magnetic anomaly profiles to estimate
fluctuations of the magnetic field for a period
when the reversal rate was low (40-83 Ma)
compared to the last million years. For this
purpose, we compute stacks of profiles in
different areas. The comparison of these stacks
reveals many micro-anomalies that are
coherent worldwide and thus due to
fluctuations of the magnetic field.

Sea surface magnetic profiles are extracted from a global database

2 . DGTG S e l €C'|' 10 n (NGDC) complemented by french data from the Indian Ocean.

Geomagnetic polarity timescale
(Cande and Kent, 1995)

Map of the magnetic lineations (according to Cande et al. 1989)
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This study — Previous studies

* including Blakely (1974), Cande and Labrecque (1974),
Cande and Kent (1992b), Bowers et al. (2001), Gee et al.
(2000), Pouliquen et al. (2001a,b).

magnetic lineations

3. Data Analysis
1. Reduction to the pole

Reduction to the pole is obtained by applying the inverse phase filter ele (Schouten and
McCamy, 1972). Skewness of the magnetic anomaly profile is determined visually by
searching for the best angle 6 so that the profile resemble an anomaly model computed
to the pole. All profiles of a given area are reduced to the pole with a same average
angle, assuming the variation of the skewness angle remain small enougth

2. Stretching and stacking the profiles

Reversals are used as tie-points in order to convert distances into times, assuming a con-

stant spreading rate between tie-points.

Example of stack in area 8 (North Pacific):
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3. Toward the highest resolution stack

The density of tiny-wiggles strongly depending on the spreading rate, we selected

profiles with the highest spreading rates :

- for chrons 19R to 21R : areas 3,4,5 from North Pacific

- for chrons 22 to 29R : Indian Ocean

- for chrons 30 to 33R : profiles selected in South and North Pacific and Indian Ocean

A few anomalies being very long, we added secondary tie-points in order to improve the

stack.
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5. The highest resolution stack

We modelled the highest resolution stack in terms

opposite polarity). Before picking the tiny-wiggles,
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of cryptochrons (i.e. short intervals of
we tested the stability of the stacks by

area including only Tor 2 profiles

repeating the stacking after removing one of the profiles. We also checked that the pattern

of tiny-wiggles could be recognized in most profiles used for the stacking
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6. Temporal distribution of tiny-wiggles
a. Inside chrons b. Within the investigated period

Cumulative distribution function of x

Tiny-wiggle frequency within chrons

For each tiny-wiggle, we estimated
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) ’ ’ » rine ) ’ ’ ’ ’ There are no tiny-wiggle with x less than 0.1 or larger than 0.9, i.e. Fpr Sh(m. chror}s, because of the width of reversal anoma-
The mean half-spreading rate of the profiles used for the stacking is close to the reversals. We interpret this as the result of the width of the lies, no tmy-.w iggle can be. detec?ted.
about 60 km/Ma and always higher than 40 km/Ma. anomalies produced by reversals “hiding” any possible nearby tiny- The covrrelatlon betweep tiny-wiggle frequency apd mean
wiggle. spreading r.ate otherwise suggests thaF spre'admg rates
. The cumulative distribution function being a straight line for 0.1< x < have some mﬂuencc? on thf? numlf)er of t1ny-w1ggl~es.
7 . C onc I u SI10 n 0.9, the distribution of tiny-wiggles inside chrons otherwise appears to No long term trend in the tiny-wiggle frequency is seen.
Tiny-wiggles are ubiquitous during the period 40-83 Ma and their distribution seems to be be homogenous.
rather homogeneous.
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reconstruct the tectonic history of oceanic basins.
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