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1) Introduction

Conventional measurements of heat
flow at sea using a short probe cannot
be performed in shallow waters,
consequently few measurements exist

For example on the Congo margin:

Sparse evidence of "anomalous" thermal regime on some margins:

from Lucazeau et al. (2004)
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More data are needed...

Oil wells are deep enough to reach zones
undisturbed by seasonal variations of

Oil exploration is or has been active on

Results from deep offshore wells can be

O compared to conventional measurements
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Let's see more about thermal
— conductivity and temperatures
from oil exploration data

3) Insights into temperature corrections

. . Logging & measurements of
| Mud circulation | bottom-hole temperature

1
Time interval: I tc te

Stage: Drilling

= Temperature measurements must be corrected
from the cooling effect of mud circulation:

(Red lines: Isotherms)

There are several ways to model the effect of mud circulation:

- radius can be neglected (linear source) or not (cylindrical source)

- circulation time tc can be neglected (instantaneous heat extraction) or not
(continuous heat extraction)

- contrast of thermal properties borehole's mud / rocks can be neglected (1-
media) or not (2-media)

- and finally the well-known Horner correction is a first order development
of the "continuous" corrections

—

Mud circulation modelling
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(Bullard, 1947)

Continuous  Instantaneous
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extraction (tc neglected)

y 1-media

r?/4.x.te << 1 = Horner approximation
(Dowdle & Cobb, 1975)

Correction is possible if at least 2 bottom-hole
temperatures have been measured at different times te.

Continuous  Instantaneous
g (Middleton, 1982) (Shen & Beck, 1986)

2-media
(borehole & rocks)

Continuous

mm) Comparison of corrections...

As expected, the
extrapolations of the
Horner correction and its
parent models diverge as
r?/4xte approaches 1

Linear source models can lead to unrealistic
results because of a 'delay time' td after the
end of mud circulation.
The correction fails when a temperature has
te < td. As td ~ r2/4x, linear source models
2, . cannot be applied for r*/4xte > 1.

 Con. eyt sores o e This means that linear source models don't
3 necessarily have a wider application domain
than the Horner correction.
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2-media models are not robust on
low-quality data:

Instantaneous and continuous
models give similar results:
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we had the opportunity to compare the corrections on a very
large Australian data set (~500 boreholes, 2600 temperatures)

o 50
t te ()

e
ca tic!

520 Cinear source (unrealistic!

g

§ o N

g | Delay time

g | :

8 H

€ JcHiindrical source ;

End of mud circ.

From well: Bridgewater Bay 1

Our preferred model is the cylindrical source,

1-media model

The instantaneous version (Middleton, 1982) is

simpler, and gives the same results as the

continuous version

2) Thermal conductivity from geophysical well logs (Goutorbe et al., 2006)

Construction of a comprehensive data set of {well logs, thermal conductivity measurement}

Assaciation {well logs, thermal cond.}
on ODP site 1109D:
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4700 examples {well logs, thermal conductivity} from 90 ODP sites + 65 oil exploration boreholes, covering numerous lithological contexts

Using.néural networks to predict thermal conductivity from geophysical well logs

Iterative adjustment of
the MLP's parameters

—>

Set of examples
{well logs, thermal cond.}

used to train a multi-layer
perceptron (MLP)...

(special type of neural network)

a multi-layer perceptron/—\

Thermal
conductivity

...because MLP are universal
approximators (Cybenko, 1989).
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A ~15% level of confidence can be expected from the neural networks' predictions

South Africa

Acquisition of well logs and well completion reports (WCR) from

Petroleum Agency of South Africa

Thermal conductivity: application of neural networks on well logs

Temperatures: already corrected in WCR

\
»4) Application to South Africa and Australia

Western margin Extension Late Jurassic - early Cret.
) Oldest magnetic anomaly: M4 (127 Ma)

(Orunge basin Volcanic margin

Heat flow = 40-60 mW/m?*

~ 40-60 mW/m? ~ 66 mW/m* |
(oil explo. data) (Proterozoic belts)
T

Most of the wells are
located on (or near) the
transitional igneous crust
domain

Thermal regime is perhaps

= | from Seranne and Anka (2005)
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lements in sediments?

-> or higher mantle heat flow?

Thermal regime of the passive margins bordering the
Western (Archean) province:

- old ocean regime? But it is a continental domain...!
- extended crust -> if identical crustal heat production, heat

gical Survey
Thermal conductivity: from well logs

Temperatures: corrected using the Middleton (1982) model

Other areas to interpret...

Margins from different
contexts have, on the
average,  surprisingly
similar heat flow.

On the other hand, we
haven't studied local
variations in detail.

refraction...).

Few studies of the deep crustal structure

Southern margin  Complex structure

Basement uplifted and arched (?)

High values on the western part: 60-70 mW/m?
Low values on the eastern part: 40-50 mW/m?

...more information on the nature of the crust, the deep structure of
the margin, etc., are needed for correct interpretation (variations in
mantle heat flow, in crustal or sediments heat production, heat

Southern margin
(Browse, Bonaparte basins)

“Precabrian
basement

-
Browse /655
basin /%2

imor sea

NW-SW extension from Late Devonian
to Carboniferous (-> Bonaparte basin)
NW-SE extension from Early Permian to
Late Jurassic (-> Browse basin)
Breakup ~155 Ma

5-6Ma: collision Australia-Eurasia,
subduction
p~2.6

Heat flow decrease from 80 20
mW/m? on the Central province to 40-
60 mW/m? on the margin

-> explained by decrease in radogenic
confribution due to crustal thinning?

continental margins

[ Conclusion and perspectives
® A method for estimating thermal conductivity from well logs has been set up
® Several models for bottom-hole temperatures' correction have been analyzed
= Oil exploration data are being processed to quantify the thermal regime of several
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