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ABSTRACT
Dispersion and attenuation of waves propagating in real earth media can be described well by a viscoelastic
model. I present the method developed by Robertsson et. al. (1994) for modeling a constant Q as a function of
frequency, based on a system of first order linear partial differential equations derived through the introduction
of memory variables. This is a second order in time and fourth order in space scheme, based in the time domain.

BASIS OF THE LINEAR VISCOELASTIC MODEL
A viscoelastic medium may be defined by a stress relaxation function, which corresponds to the Lamé parame-
ters in an elastic medium. This stress relaxation function is convolved with the time history of the strain to yield
the current stress, whereas in an elastic medium the Lamé parameters are multiplied by the strain to yield the
stress. For an array of L relaxation mechanisms (SLSs), the quality factor Q may be defined as a function of
frequency and stress and strain relaxation times, such that
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Blanch et. al. (1995) introduce a dimensionless variable τ , defined τ =
τεl
τσl

− 1, such that the inverse of Q may
be represented as

Q−1 =
ωτστ

1 + ω2τ2
σ(1 + τ )

(2)

for the case of a single relaxation mechanism. A plot of Q as a function of frequency using two different τσ

and two different τ (figure 1) indicates that the magnitude of Q is dependent on the value of τ . The curve is
displaced in frequency when τσ is changed, and displaced in magnitude when τ is changed. The premise of
the τ -method is to implement an array of τ -values to approximate the magnitude of Q for several relaxation
mechanisms, which acquire maximum attenuation at different frequencies. Since Q is rarely less than 20 for
any real materials, 1 + τ ≈ 1, and equation (??) becomes linear in τ . With an increasing number of relaxation
mechanisms, a constant Q is approximated more accurately over a wider bandwidth (below).
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Figure 1: Left: Q as a function of frequency for two different τ and two different τσ. Solid: τ=4.6212×10−2,
τσ=1.5915×10−2 corresponding to 10Hz. Dashed: τ=4.6212×10−2, τσ=1.5915×10−3 corresponding to 100Hz.
Dashed-dotted: τ=2.3106×10−2, τσ=1.5915×10−2 corresponding to 10Hz. Right: Approximations to a con-
stant Q of 20 between 2 and 25Hz using one (blue), two (red), and five (green) relaxation mechanisms.

THE τ -METHOD
Viscoelasticity is implemented by adding memory variables, rl, to the components of the stress tensor. These
memory variables represent decaying non-propagating modes coupled to the stress. The equation of pressure
p in viscoelastic media is obtained from the relation between strain ε and stress σ, coupled with the memory
variables rl, such that
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where the memory variables are defined
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where MR represents the relaxation modulus of the medium, H(t) is the Heaviside function, and τεl and τσl

are the strain and stress relaxation times of the lth SLS. To avoid the convolution of vx in the expression of the
memory variables rl, the time derivative of equation (4) may be used to obtain
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)
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)vx

]
. (5)

When combined with Newton’s second law ρv = −px, equations (3) and (5) provide the complete description
of viscoelastic wave propagation.

ABSORBING BOUNDARIES
Absorbing boundary conditions must be incorporated into the finite-difference scheme to minimise reflections
from the artificial boundaries of the model. The optimal absorbing boundary condition (OABC) of Peng and
Toksöz (1994,1995) was developed to provide absorption across a wide range of incident angles. The OABC
extrapolates the wavefield on artificial boundaries of the model, which is represented as a linear combination of
wavefields at previous time steps and interior grid points. A filter is designed from the decomposed wavefield to
minimize reflection coefficient, and requires only 3×3 gridpoints in space and time.
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Figure 2: P -wavefield snapshots at time-step n=300 (left) and n=570 (right) of viscoelastic propagation im-
plementing one relaxation mechanism and the Peng and Toksöz OABC boundary condition. A homogeneous
2-D model of 200×200 gridpoints and p-wave velocity of 1500m/s was used. A ricker source with a dominant
frequency of 10 Hz was positioned in the centre of the model (50,50). A grid size of 15 m and time step of 2 ms
was used, to yield a maximum Courant number of 0.201.

NUMERICAL EXAMPLE
Viscoelastic wave propagation was modeled through a typical cross-section of an incised valley, illustrated in
figure ??. The model is 300m in the vertical and horizontal directions, the upper 70m are water. A ricker source
of 15Hz was used, and a grid spacing of 10m and time-step of 1.5ms implemented, which leads to a maximum
Courant number of 0.33.
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Parameter Water Layer 1 Layer 2 Layer 3 Layer 4
vp (m/s) 1520 1600 1750 1900 2200

Qp 10 000 40 50 50 100
vs (m/s) 0 400 800 1000 1200

Qs 0 30 35 45 70
ρ (kg/m3) 1050 1300 1500 1500 2000

Table 1: The average material properties used for the valley model, taken from the incised valley model of
Siringan (1993) and Robertsson et. al. (1994). vp denotes the P -wave velocity and Qp its quality factor. vs

denotes the S-wave velocity and Qs its quality factor. ρ is the density.

Snapshots of the P -wave field for both the viscoelastic and elastic simulation are shown in figures 4 through
7. The amplitude of the P -wave is reduced from propagating through the viscoelastic sediments relative to the
elastic propagation.
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Figure 3: Snapshots of the P -wavefield for the viscoelastic (left) and elastic (right) incised valley model.Top:
Snapshot at time-step n=300. Bottom: Snapshot at time-step n=360. The Peng and Toksöz OABC boundary
condition was implemented.

CONCLUSIONS
The finite-difference scheme of Robertsson et. al. (1994) enables efficient and accurate viscoelastic modeling.
The mothod has been developped to calculate up to five sets of relaxation times such that a constantQ is obtained
over a larger frequency range. A Q model may be input to the modeling scheme, and a different set of relax-
ation times are therefore computed at each gridpoint. The Peng and Toksöz boundary condition is implemented,
providing excellent absorption at the model boundaries.




