AGU Fall Meeting – December 14-19, 2008 – San Francisco, CA (USA) Modeling infrared optical properties of leaves to improve water content estimation

¹ Géophysique spatiale et planétaire, Institut de Physique du Globe de Paris, Paris, France, fgerber@ipgp.fr & jacquemoud@ipgp.fr, ² Commissariat à l'Énergie Atomique, Bruyères-le-Châtel, France, rodolphe.marion@cea.fr, ³Spectroscopy Lab, United States Geological Survey, Reston, VA, USA, bribeirodaluz@usgs.gov, ⁴Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes, Institut National de la Recherche Agronomique, Avignon, France, olioso@avignon.inra.fr, ⁵ Département Optique Théorique et Appliquée, Office National d'Etudes et de Recherches Aérospatiales, Toulouse, France, bernard.tanguy@onecert.fr

Introduction

- Vegetation spectral optical properties in the infrared domain (2.5 14 μm) are still poorly known and exploited (Salisbury & Milton, 1988) • Water mainly absorbs electromagnetic radiation in this domain and its retrieval using imaging spectrometry should be improved Vegetation emissivity seems to depend on leaf water status (Olioso et al., 2007)

Two independent datasets		
	USGS	
Time and place	June 2008, USGS National Center of Reston (VA)	
Visible – SWIR spectrometer	Perkin Elmer Lambda 900	
MWIR – LWIR spectrometer	Nicolet Nexus 670	
Dataset	32 leaf samples – 17 species	

 \rightarrow 1.2 – 5.7 µm: R and T are strongly linked to water content \rightarrow 10 – 14 µm: R and T are slightly linked to water content

the $8 - 14 \,\mu m$ domain

References

A. Olioso et al. (2007). Evidences of low land surface thermal infrared emissivity in presence of dry vegetation. IEEE Geosciences and Remote Sensing Letters, 4(1), 112 - 116 B. Ribeiro da Luz & J. Crowley (2007). Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0 - 14.0 µm). Remote Sensing of Environnement, 109(4), 393 - 405 J.W. Salisbury & N.M. Milton (1988). Thermal infrared (2.5 to 13.5 µm) directional hemispherical reflectance of leaves. Photogrammetric Engineering and Remote Sensing, 54(9), 1301 – 1304 W. Verhoef et al. (2007). Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1801-1822

F. Gerber^{1, 2}, B. Ribeiro da Luz³, A. Olioso⁴, S. Jacquemoud¹, R. Marion² and B. Tanguy⁵

First attempt to model leaf optical properties in the continuous 0.4 – 5.7 μm wavelength range, first model of leaf emissivity • Future work: extension of the model after 5.7 μm, scaling up these properties to simulate top-of-canopy and top-of-atmosphere radiances • Improvement of vegetation water content retrieval by remote sensing techniques and Earth's energy budget knowledge

Aknowledgments

Many thanks to the USGS Spec Lab team and to the ONERA-DOTA team for their welcome during the measurement campains