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Introduction The PROSPECT –VISIR modelIntroduction The PROSPECT –VISIR modelIntroduction

�

The PROSPECT –VISIR model

� Vegetation spectral optical properties in the infrared domain (2.5 – 14 µm) are still poorly known and exploited (Salisbury & Milton, 1988) PROSPECT is a radiative transfer model simulating leaf  directional-hemispherical reflectance and � Vegetation spectral optical properties in the infrared domain (2.5 – 14 µm) are still poorly known and exploited (Salisbury & Milton, 1988) PROSPECT is a radiative transfer model simulating leaf  directional-hemispherical reflectance and 
� Water mainly absorbs electromagnetic radiation in this domain and its retrieval using imaging spectrometry should be improved

PROSPECT is a radiative transfer model simulating leaf  directional-hemispherical reflectance and 
transmittance in the  0.4 – 2.5 µm region as a function of  biochemical content (photosynthetic � Water mainly absorbs electromagnetic radiation in this domain and its retrieval using imaging spectrometry should be improved transmittance in the  0.4 – 2.5 µm region as a function of  biochemical content (photosynthetic � Water mainly absorbs electromagnetic radiation in this domain and its retrieval using imaging spectrometry should be improved

� Vegetation emissivity seems to depend on leaf  water status (Olioso et al., 2007) pigments, water and dry matter) and structure anatomy� Vegetation emissivity seems to depend on leaf  water status (Olioso et al., 2007) pigments, water and dry matter) and structure anatomy� Vegetation emissivity seems to depend on leaf  water status (Olioso et al., 2007)

� Radiative transfer models at leaf  (PROSPECT) and canopy (4SAIL) levels would be useful to understand the radiometric signal at these wavelengths� Radiative transfer models at leaf  (PROSPECT) and canopy (4SAIL) levels would be useful to understand the radiometric signal at these wavelengths� Radiative transfer models at leaf  (PROSPECT) and canopy (4SAIL) levels would be useful to understand the radiometric signal at these wavelengths

� Updated measurements of  continuous reflectance and transmittance spectra (0.4 – 14 µm) of  plant leaves displaying a wide range of  water contents are needed  
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Eq. 1 Absorption of  one elementary layer as a Eq. 1 Absorption of  one elementary layer as a 

Simulations at canopy scaleTwo independent datasets dry leaves & 41 fresh and intermediary hydrated leaves:
Eq. 1 Absorption of  one elementary layer as a 
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absorption coefficients and  leaf  structure parameter
� 4SAIL canopy model (Verhoef  et al., 2007) in the - Directionnal hemispherical reflectance and transmittance spectra between 0.4 and 14 absorption coefficients and  leaf  structure parameter
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USGS ONERA visible – infrared
- Directionnal hemispherical reflectance and transmittance spectra between 0.4 and 14 
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� Input variables: reflectance and transmittance 
µm
- Leaf  dry matter and water content (g/cm²) Fig. 3 The PROSPECT modelJune 2008, USGS National  July 2008, ONERA Research � Input variables: reflectance and transmittance - Leaf  dry matter and water content (g/cm²) Fig. 3 The PROSPECT model

Time and place
June 2008, USGS National  July 2008, ONERA Research � Input variables: reflectance and transmittance 

spectra of  fresh and dry Catalpa leaves (USGS)
- Leaf  dry matter and water content (g/cm²)Time and place

Center of  Reston (VA) Center of  Toulouse (France) spectra of  fresh and dry Catalpa leaves (USGS)Center of  Reston (VA) Center of  Toulouse (France)
Parameters Variables
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Visible – SWIR spectrometer Perkin Elmer Lambda 900 ASD FR
Parameters Variables

Visible – SWIR spectrometer Perkin Elmer Lambda 900 ASD FR
Parameters Variables

� Water k (λ) � Water content CVisible – SWIR spectrometer Perkin Elmer Lambda 900 ASD FR
� Water kw(λ) � Water content Cw� Water kw(λ) � Water content Cw

MWIR – LWIR spectrometer Nicolet  Nexus 670 Bruker Equinox 55 � Dry matter km λ) specific � Dry matter content CmMWIR – LWIR spectrometer Nicolet  Nexus 670 Bruker Equinox 55 � Dry matter km λ) specific � Dry matter content CmMWIR – LWIR spectrometer Nicolet  Nexus 670 Bruker Equinox 55
� Chlorophyll k (λ) absorptions coefficients � Chlorophyll content CLAI = 3

Dataset 32 leaf  samples – 17 species 32 leaf  samples – 14 species
� Chlorophyll kab (λ) absorptions coefficients � Chlorophyll content Cab

LAI = 3

Dataset 32 leaf  samples – 17 species 32 leaf  samples – 14 species
� Chlorophyll kab (λ) absorptions coefficients � Chlorophyll content Cab

� Carotenoid k (λ) � Carotenoid content C
LIDFa/b = -0.35/-0.15Dataset 32 leaf  samples – 17 species 32 leaf  samples – 14 species

� Carotenoid kcar (λ) � Carotenoid content Ccar

LIDFa/b = -0.35/-0.15

Hotspot = 0.05 � Carotenoid kcar (λ) � Carotenoid content CcarHotspot = 0.05

Sunlit/shaded soil temp.= 20/10°C
� Refractive index n(λ) � Leaf  structure parameter NSunlit/shaded soil temp.= 20/10°C
� Refractive index n(λ) � Leaf  structure parameter N

For 23 completely dry leaves and 41 fresh leaves including intermediate water contents, we measured: Sunlit/shaded leaves temp.= 15/5°CFor 23 completely dry leaves and 41 fresh leaves including intermediate water contents, we measured: Sunlit/shaded leaves temp.= 15/5°C

Solar zenith angle = 37°
For 23 completely dry leaves and 41 fresh leaves including intermediate water contents, we measured:

� directional-hemispherical reflectance R and transmittance T spectra between 0.4 and 14 µm
Solar zenith angle = 37°

Extension of PROSPECT in the 2.5 – 5.7 µm domain: PROSPECT – VISIR� directional-hemispherical reflectance R and transmittance T spectra between 0.4 and 14 µm Soil: brown fine sandy loam (ENVI spectral library) Extension of PROSPECT in the 2.5 – 5.7 µm domain: PROSPECT – VISIRdirectional-hemispherical reflectance R and transmittance T spectra between 0.4 and 14 µm
� leaf  water C and dry matter C contents (g/cm²)

Extension of PROSPECT in the 2.5 – 5.7 µm domain: PROSPECT – VISIR

Hypothese: no pigment absorption (k (λ) = k (λ) = 0) after 0.8 µm� leaf  water Cw and dry matter Cm contents (g/cm²) Hypothese: no pigment absorption (kab(λ) = kcar(λ) = 0) after 0.8 µmHypothese: no pigment absorption (kab(λ) = kcar(λ) = 0) after 0.8 µmab car

Purpose: determination of k (λ), k  (λ) and n(λ)Purpose: determination of kw(λ), km (λ) and n(λ)Purpose: determination of kw(λ), km(λ) and n(λ)

Available data: 64 leaf samples (reflectance and transmittance spectra, water and dry matter content)Fig. 2 Simulations of  canopy reflectance using 4SAIL Available data: 64 leaf samples (reflectance and transmittance spectra, water and dry matter content)Fig. 2 Simulations of  canopy reflectance using 4SAIL Available data: 64 leaf samples (reflectance and transmittance spectra, water and dry matter content)
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known (we take pure liquid water specific absorption coefficient k  (λ) in the literature) �Promising results for remote sensing applications
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Fig. 1 USGS & ONERA datasets: reflectance and transmittance spectra colored as a function of  leaf  water contentFig. 1 USGS & ONERA datasets: reflectance and transmittance spectra colored as a function of  leaf  water contentFig. 1 USGS & ONERA datasets: reflectance and transmittance spectra colored as a function of  leaf  water content

Specific absorption coefficient of  pure liquid water in log scale and arbitrary unitsSpecific absorption coefficient of  pure liquid water in log scale and arbitrary unitsSpecific absorption coefficient of  pure liquid water in log scale and arbitrary units

� 1.2 – 5.7 µm: R and T are strongly linked to water content� 1.2 – 5.7 µm: R and T are strongly linked to water content� 1.2 – 5.7 µm: R and T are strongly linked to water content
Fig. 6 Retrieved  vs measured leaf  water contentFig. 5 Inversion of  the model on a dry and a fresh leafFig. 4 Calibrated water and dry matter specific absorption 

� 5.7 – 10 µm: T is null and R ranges from 0.02 to 0.12. R is driven by molecular composition and
Fig. 6 Retrieved  vs measured leaf  water content

RMSE=0.0054

Fig. 5 Inversion of  the model on a dry and a fresh leaf

Dashed line: data – plain line: model

Fig. 4 Calibrated water and dry matter specific absorption 

coefficients� 5.7 – 10 µm: T is null and R ranges from 0.02 to 0.12. R is driven by molecular composition and RMSE=0.0054Dashed line: data – plain line: modelcoefficients5.7 – 10 µm: T is null and R ranges from 0.02 to 0.12. R is driven by molecular composition and
structure of leaf surface in the 8 – 10 µm domain (Ribeiro da Luz & Crowley, 2007)

RMSE=0.0054Dashed line: data – plain line: modelcoefficients

(Because of  CO absorption in the integrating sphere during ONERA campain, the 4.16 – 4.47 µm domain is not defined) structure of leaf surface in the 8 – 10 µm domain (Ribeiro da Luz & Crowley, 2007) (Because of  CO2 absorption in the integrating sphere during ONERA campain, the 4.16 – 4.47 µm domain is not defined) 
� 10 – 14 µm: R and T are slightly linked to water content

(Because of  CO2 absorption in the integrating sphere during ONERA campain, the 4.16 – 4.47 µm domain is not defined) 
� 10 – 14 µm: R and T are slightly linked to water content� 10 – 14 µm: R and T are slightly linked to water content

�Emissivity ε =1-R-T ranges from 0.72 to 0.96 in the 2.9 – 5.7 µm domain and from 0.90 to 0.98 in�Emissivity ε =1-R-T ranges from 0.72 to 0.96 in the 2.9 – 5.7 µm domain and from 0.90 to 0.98 in�Emissivity ε =1-R-T ranges from 0.72 to 0.96 in the 2.9 – 5.7 µm domain and from 0.90 to 0.98 in
the 8 – 14 µm domain Conclusionthe 8 – 14 µm domain Conclusionthe 8 – 14 µm domain Conclusion

� First attempt to model leaf optical properties in the continuous 0.4 – 5.7 µm wavelength range, first model of leaf emissivity� First attempt to model leaf optical properties in the continuous 0.4 – 5.7 µm wavelength range, first model of leaf emissivity� First attempt to model leaf optical properties in the continuous 0.4 – 5.7 µm wavelength range, first model of leaf emissivity
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